Publications

For a list of pub­li­ca­tions or­dered by date with ci­ta­tion in­for­ma­tions see IN­SPIRE-HEP

N3LO QCD pre­dic­tions for W & Z bo­son pro­duc­tion

  • J. Camp­bell, T. Neu­mann, Third or­der QCD pre­dic­tions for fidu­cial W-­bo­son pro­duc­tion,
    arX­iv:2308.15382, JHEP 11 (2023) 127
  • T. Neu­mann, J. Camp­bell, Fidu­cial Drel­l-Yan pro­duc­tion at the LHC im­proved by trans­verse-­mo­men­tum re­sum­ma­tion at N4LLp+N3LO, arX­iv:2207.07056, Phys.Rev.D 107 (2023) 1, L011506

Bo­son and di­bo­son processes with trans­verse-­mo­men­tum and jet-veto re­sum­ma­tion

  • J. Camp­bell, R.K. El­lis, T. Neu­mann, S. Seth, Jet-veto re­sum­ma­tion at N3LLp+NNLO in bo­son pro­duc­tion process­es, arX­iv:2301.11768, JHEP 04 (2023) 106
  • J. Camp­bell, R.K. El­lis, T. Neu­mann, S.Seth, Trans­verse mo­men­tum re­sum­ma­tion at N3LL+NNLO for di­bo­son process­es, arX­iv:2210.10724, JHEP 03 (2023) 080
  • T. Neu­mann, The dipho­ton qT spec­turm at N3LL+NNLO EPJC 81 (2021) 10, 905, arX­iv:2107.12478
  • T. Becher, T. Neu­mann, Fidu­cial qT re­sum­ma­tion of col­or-s­in­glet processes at N3LL+NNLO, JHEP 03 (2021) 199, arX­iv:2009.11437. Pub­lic re­lease of CuTe-M­CFM and MCFM 10.0.

US Snow­mass Whitepa­per

  • F.F. Cordero, A. von Man­teuf­fel, T. Neu­mann, Com­pu­ta­tional Chal­lenges for Mul­ti­-loop Col­lider Phe­nom­e­nol­o­gy: A Snow­mass 2021 White Pa­per, arX­iv:2204.04200, Com­put.­Soft­w.Big Sci. 6 (2022) 1, 14
  • signee and con­trib­u­tor of other whitepa­pers, see IN­SPIRE-HEP

MCFM

  • J. Camp­bell, T. Neu­mann, Pre­ci­sion Phe­nom­e­nol­ogy with MCFM, JHEP 1912 (2019) 034, arX­iv:1909.09117. Re­lease pub­li­ca­tion of MCFM-9.0. We ad­dress in gen­eral the is­sues for reach­ing high pre­ci­sion in Monte Carlo in­te­gra­tion for higher or­der cal­cu­la­tions, slic­ing pa­ra­me­ter de­pen­dence of higher or­der cal­cu­la­tions and in pre­ci­sion physics like Drel­l-Yan, and the ef­fi­cient cal­cu­la­tion of PDF un­cer­tain­ties at NN­LO.

Sin­gle-­top-quark pro­duc­tion at NNLO and in SMEFT

  • J. Camp­bell, T. Neu­mann, Z. Sul­li­van, Test­ing par­ton dis­tri­b­u­tion func­tions with t-chan­nel sin­gle-­top-quark pro­duc­tion arX­iv:2109.10448, Phys.Rev.D 104 (2021) 9, 094042
  • J. Camp­bell, T. Neu­mann, Z. Sul­li­van, Sin­gle-­top-quark pro­duc­tion in the t-chan­nel at NNLO, arX­iv:2012.01574, JHEP 02 (2021) 040. Pub­licly avail­able since MCFM-9.1.
  • T. Neu­mann, Z.E. Sul­li­van, Of­f-shell sin­gle-­top-quark pro­duc­tion in the Stan­dard Model Ef­fec­tive Field The­o­ry, JHEP 1906 (2019) 022, arX­iv:1903.11023. Pub­licly avail­able since MCFM-8.3.

The per­tur­ba­tive QCD gra­di­ent flow

  • R.V. Har­lan­der, F. Lange, T. Neu­mann, Hadronic vac­uum po­lar­iza­tion us­ing gra­di­ent flow arX­iv:2007.01057.
  • J. Artz, R.V. Har­lan­der, F. Lange, T. Neu­mann, M. Prausa, Re­sults and tech­niques for higher or­der cal­cu­la­tions within the gra­di­ent flow for­mal­ism, JHEP 1906 (2019) 121, arX­iv:1905.00882.
  • R.V. Har­lan­der, T. Neu­mann, The per­tur­ba­tive QCD gra­di­ent flow to three loops, JHEP 1606 (2016) 161, arX­iv:1606.03756.

Zγ pro­duc­tion

  • J.M. Camp­bell, T. Neu­mann, C. Williams, Zγ Pro­duc­tion at NNLO In­clud­ing Anom­alous Cou­plings, JHEP 11 (2017) 150, arX­iv:1708.02925. Pub­licly avail­able since MCFM-8.1.
    This study has been used in the AT­LAS study in ref. [1] for a uni­fied SM and anom­alous cou­plings study at NN­LO.

Hig­gs+­jet pro­duc­tion

  • T. Neu­mann, Nex­t-­to-lead­ing or­der Hig­gs+­jet pro­duc­tion at large trans­verse mo­menta in­clud­ing top quark mass ef­fects, J. Phys. Comm. 2 (2018) 095017, arX­iv:1802.02981.
    This study uses a high en­ergy as­ymp­totic ex­pan­sion of the two-loop vir­tual cor­rec­tions and com­bines them with pre­vi­ous re­sults. Re­sults are top-quark-­mass ac­cu­rate at low and high pT apart from the 2mt thresh­old re­gion. Pub­licly avail­able in MCFM-8.2.
  • T. Neu­mann, C. Williams, The Higgs bo­son at high pT, Phys. Rev. D95 (2017) 014004, arX­iv:1609.00367.
    Com­pu­ta­tion of full top-quark-loop Hig­gs+2­jet am­pli­tudes in com­bi­na­tion with low-en­ergy as­ymp­totic ex­pan­sion of two-loop vir­tual cor­rec­tions and im­ple­men­ta­tion in MCFM. Used in the CMS study for the search for boosted Higgs bosons to b [2]. Pub­licly avail­able in MCFM-8.1.
  • T. Neu­mann, M. Wiese­mann, Fi­nite top-­mass ef­fects in glu­on-in­duced Higgs pro­duc­tion with a jet-veto at NNLO, JHEP 11 (2014) 150, arX­iv:1408.6836.
    We com­bine the pre­vi­ous re­sults with a NNLO cal­cu­la­tion of in­clu­sive Higgs pro­duc­tion.
  • R.V. Har­lan­der, T. Neu­mann, Prob­ing the na­ture of the Hig­gs-gluon cou­pling, Phys. Rev. D88 (2013) 074015, arX­iv:1308.2225.
    Study on the im­pact of di­men­sion five and seven op­er­a­tors that mod­ify the Hig­gs-gluon cou­pling in Hig­gs+­jet pro­duc­tion.
  • R.V. Har­lan­der, T. Neu­mann, K.J. Oz­eren, M. Wiese­mann, Top-­mass ef­fects in dif­fer­en­tial Higgs pro­duc­tion through gluon fu­sion at or­der αs4, JHEP 08 (2012) 139, arX­iv:1206.0157.
    This first study fo­cuses on a low en­ergy as­ymp­totic ex­pan­sion of the two-loop vir­tual cor­rec­tions.

Pro­ceed­ings

  • T.Neu­mann, Tools for per­tur­ba­tive high­-­pre­ci­sion cal­cu­la­tions, con­tri­bu­tion to LHCP 2021, PoS LHCP2021 (2021) 295
  • T. Neu­mann, Re­cent De­vel­op­ments in Gluon Fu­sion Higgs Cal­cu­la­tions, con­tri­bu­tion to the 13th Con­fer­ence on the In­ter­sec­tions of Par­ti­cle and Nu­clear Physics (CI­PANP 2018) Palm Springs, Cal­i­for­nia, USA arX­iv:1810.01800.
  • T. Neu­mann, C. Williams, The Higgs bo­son at high pT: Fi­nite top-­mass im­proved re­sults, PoS LL2016 (2016) 027

 
 

Ref­er­ences

[1] M. Aaboud, oth­ers, Mea­sure­ment of the Zγ → νν̄γ pro­duc­tion cross sec­tion in pp col­li­sions at $\sqrt{s}=13$ TeV with the AT­LAS de­tec­tor and lim­its on anom­alous triple gauge-­bo­son cou­plings, JHEP. 12 (2018) 010, doi:10.1007/JHEP­12(2018)010, http://arx­iv.org/ab­s/1810.04995.

[2] A.M. Sirun­yan, oth­ers, In­clu­sive search for a highly boosted Higgs bo­son de­cay­ing to a bot­tom quark-an­ti­quark pair, Phys. Rev. Lett. 120 (2018) 071802, doi:10.1103/­Phys­RevLet­t.120.071802, http://arx­iv.org/ab­s/1709.05543.